YEAR; 2004 PAPER 1: 24 November 2004

1. Figure 1.1 shows part of a vernier calliper used to measure the width of a rectangular glass block.

The correct reading is...
A. 31.4 mm
B. 32.4 mm .
C. 32.5 cm
D. 32.6 mm
2. A train accelerates uniformly from rest at $0.2 \mathrm{~m} / \mathrm{s}^{2}$ over a distance of 1 km . The final velocity is...
A. $0.2 \mathrm{~m} / \mathrm{s}$
B. $2.0 \mathrm{~m} / \mathrm{s}$
C. $20 \mathrm{~m} / \mathrm{s}$
D. $200 \mathrm{~m} / \mathrm{s}$
3. The diagram shows a solid toy resting on the ground.

At which of the four points A.B.C or D, should the weight of the solid toy be concentrated so that is does not topple over easily?
4. What is the volume of a block of expanded polystyrene of mass 40 Gg and density $18 \mathrm{~kg} / \mathrm{m} 3$?
A. $0.025 \mathrm{~m}^{3}$
B. $0.205 \mathrm{~m}^{3}$
C. $2.5 \mathrm{~m}^{3}$
D. $0.002 \mathrm{Sm}^{3}$
5. A toy car of mass 0.5 kg is swung in a vertical circular path on the end of a string of length 100 cm so that It moves with a constant speed of $5 \mathrm{~m} / \mathrm{s}$.

Fig 5.1

Which of the following statements is false about the motion of the toy car?
A. The tension in the string is greater at L than at M .
B. The net force on the car is constant in magnitude.
C. If the string breaks, the body will move radially outwards
D. The net force on the body is always directed towards the centre of the circle.
6. Figure below shows a wheelbarrow being used to carry a load.

What is the value of the force, F ?
A. 0.75 N
B. 7.5 N
C. 75 N
D. 750 N
7. Fig. 7.1 below shows a block being pulled from the ground using two pulleys.

Fig. 7.1

What is the mechanical advantage of the pulley system?
A. 0
B. 1
C. 2
D. 3
7. In Flg. 8.1 below a bait of mass 2 kg rolls from point A through B to C and then back to A .

What is the greatest velocity attained by the ball during its motion? (Ignore friction end take the value of g to be $10 \mathrm{~N} / \mathrm{kg}$)
A. $5 \mathrm{~m} / \mathrm{s}$
B. $10 \mathrm{~m} / \mathrm{s}$
C. $20 \mathrm{~m} / \mathrm{s}$
D. $100 \mathrm{~m} / \mathrm{s}$
8. Why does a hot air balloon rise up in the air?
A. The air Inside is hot and dense •
B. The air expands and becomes less dense.
C. The air contracts and becomes less dense.'
D. The air inside is cold and less dense.
9. A student arranges an experiment to find out which surface is a better emitter or infra-red radiation than the other.

What observation is made on the galvanometer when the cube is turned so that the black surface now faces the thermopile? The galvanometer...,
A. needle deflects
B. needle deflects more.
C. needle deflects less.
D. needle does not deflect
10. A wave has a frequency of 4 Hz and a wavelength of 200 cm . What are the speed and the period of the wave?

	SPEED	PERIOD
A	$0.8 \mathrm{~m} / \mathrm{s}$	0.2 s s
B	$8 \mathrm{~m} / \mathrm{s}$	0.25 s
C	$8 \mathrm{Q} 0 \mathrm{~m} / \mathrm{s}$	0.0025 s
D	$8 \mathrm{Q} 0 \mathrm{~m} / \mathrm{s}$	8 s

11. One side of the main bedroom has a modem clock while the opposite side had a large dressing mirror. A child enters this room and sees the image of the dock in the mirror as shown below.

Fig. 12.1

What is the correct time shown by the actual dock?
A. 10:10 hours
B. 11:10 hours
C. $13: 50$ hours
D. $14: 50$ hours
12. A circuit is arranged as shown below; S_{1}, S_{2} and S_{3} are switches.

In order for the lamp to produce light...
A. S 1 and $\mathbf{S}_{\mathbf{2}}$ should be ON while S_{3} should be OFF.
B. S 1 and S_{3} should be ON white Si should be OFF.
C. S 1 should be ON white S_{2} and S_{3} should be OFF.
D. the reed should be made of copper,
13. A battery drives 60 C of charge in a circuit for 20 S . The current in the circuit is...
A. 0.03 A
B. 3 A
C. 3 A
D. 300 A
14. Fig 15.1 below shows a circuit with three junctions X, Y and Z and four lamps between junction Y and Z are identical.

Fig 15.1

What current is flowing through the ammeter?
A. 4A towards Y
B. 3 A towards Z
C. 4 A towards Z
D. 5 A towards Z
15. In the circuit below the potential difference (p.d) between A and B is $4 V$.

The current in the circuit is...
A. 0.4 A
B. 1.0 A
C. 2.0 A
D. 2.5 A
16. Fig. 17.1 below shows a solenoid connected to s sensitive galvanometer G The needle of the galvanometer is pointing at zero.

From the diagram above we can deduce that...
A. the magnet Is moving towards X
B. the magnet is moving towards Y .
C. the magnet is stationery.
D. the solenoid Is made of copper.
18. The gain control of a Cathode Ray Oscilloscope (CRO) is set at $0.3 \mathrm{v} / \mathrm{cm}$. If the horizontal trace is deflected upwards by 0.3 cm , what is the unknown voltage applied to the Y -input of the Cathode Ray Oscilloscope?
A. 0 V .
B. $0.6 . \mathrm{V}$
C. 0.9 V
D. 1.0 V
19. The following equation represents the decay of Ameridum-241.

$$
{ }_{95}^{241} A m \rightarrow{ }_{93}^{237} N p+J
$$

In this equation J could be...
A. an electron
B. an alpha particle
C. hydrogen gas
D. a proton
20. The decay curve below shows how the activity of a radioactive nuclide varies with time.

Activity

The half-life of the nuclide is
A. 1 s
B. 2 s
C. 3 s
D. 4 s

